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Abstract. Bayesian probability theory along with the maximum entropy concept is widely used
for inferential problems, particularly to infer dynamic properties of strongly correlated fermion
systems from quantum Monte Carlo (QMC) imaginary time data. In current QMC applications,
however, the error covariance of the QMC data is not treated consistently. Here we present
a consistent Bayesian analysis of all the information provided by the QMC simulation. This
approach allows us to infer reliable results with the least amount of computer time.

1. Introduction

Bayesian probability theory [1, 2] provides a general and consistent frame for logical
inference if there is uncertainty. An important class of problems comprises the determination
of distribution functions, sayρ(x), based on incomplete information not providing a unique
solution of ρ(x). Bayesian probability theory allows us to exploit any type of testable
information, like expectation values

∫
ρ(x)f (x)dx of noisy (computer-) experimental data

and other forms of prior knowledge. Combined with the entropic prior it is referred to
as quantified maximum entropy (MaxEnt) [3, 4] and yields the most uncommittal and
unbiased result, given the data constraints and prior knowledge. MaxEnt has originally been
introduced to infer celestial images from incomplete and noisy radio-astronomic data. In the
sequel, it has been applied successfully to various other data-analysis problems [5, 6, 7, 8].

Here we will focus on the ill-posed inversion problem encountered in quantum Monte
Carlo (QMC) simulations [6, 9, 10]. In this field, MaxEnt has become a standard and
successful technique to infer dynamic properties of strongly correlated fermion systems
from imaginary-time QMC data. QMC simulations yield values for dynamic quantities
along the imaginary-time axis for a finite number of times. The inversion is not unique
due to the limited number of data and the presence of statistical errors. A direct inversion
of the respective Laplace transform would tremendously overfit the data and the desired
signal would be lost. Bayesian probability theory provides the consistent frame to separate
the signal from the noise. A complication arises, since the errors of the QMC data are
correlated. It has been proposed [6] to use the QMC estimate of the error-covariance matrix
in a multivariate normal distribution, which assumes that the matrix has no statistical errors.
This approach has been heavily debated as it leads in general to less useful results than
disregarding the off-diagonal elements in the first place. The reason is that the Bayesian
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analysis is not performed consistently, by using anad hoc expression for the likelihood
which ignores the statistical errors of the QMC estimate of the covariance matrix can,
which is usually large, typically of the order 1–10% for diagonal elements and 10–100%
for off-diagonal elements. The problem can be avoided by drastically increasing the sample
size (N ) which is, however, computationally very expensive and rarely feasible. Bayesian
probability theory on the other hand provides a perfect tool to exploit whatever information
is provided by QMC simulations and irrespective of the sample size.

2. Bayesian formalism

Bayes’ theorem allows us to determine the posterior probability (posterior)P(A|DCH) of
the sought-for quantityA, given the QMC dataD and further informationH . The latter
summarizes the definition and all hypotheses of the problem. The exact valuesDex

l of the
quantities measured by QMC simulations are related toA via

Dex
l = −

∫
A(ω)

e−τlω

1 + e−βω
dω. (1)

The QMC valuesDl deviate fromDex
l by statistical errorsηl . Due to the QMC-algorithm,

the errors are correlated for different indicesl and the information about the error-covariance
matrix will be denoted byC. Bayes’ theorem relates the posterior to the likelihood function
P(D|ACH), which contains the error statistics of the QMC data, and the prior probability
P(A|CH)

P (A|DCH) = P(D|ACH)P (A|CH)

P (D|CH)
. (2)

The most honest prior should summarize all our prior knowledge—the knowledge we have
aboutA prior to receiving the QMC dataA—and nothing else, i.e. it should be as ignorant
as possible otherwise [2]. In the case of a positive, additive distribution function (PAD),
like the spectral density, the most ignorant prior is the entropic prior [11]

P(A|CH) = 1

ZS

exp
(
α

∫
[A(ω) − m(ω) − A(ω) ln(

A(ω)

m(ω)
)]dω︸ ︷︷ ︸

S

)
. (3)

ZS is the normalization constant guaranteeing
∫

P(A|CH)DA = 1. The entropyS is
expressed relative to the invariant measure (default-model)m(ω).

Next we determine the likelihoodP(D|ACH)—the central topic of this paper. It
quantifies the probability for the specific data valuesDl measured by the QMC simulation,
supposing the exact functionA is known. KnowingA implies the knowledge of the exact
valuesDex due to 1 and the likelihood therefore describes the error statistics of the QMC
data

P(D|ACH) =: ρ(Dex − D) = ρ(η) given C and H. (4)

In the following, C stands for the covariance matrixCij

Cij = 1

N − 1
〈ηiηj 〉 = 1

N − 1
〈(Dex

i − Di)(D
ex
j − Dj)〉 (5)

measured by QMC sample of sizeN . To begin with, we assume that the error-covariance
is exact. The resulting problem is to determine the PADρ(η) given the constraints

Cij =
∫

ρ(η)ηiηj dη (6)
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1 =
∫

ρ(η)dη. (7)

This is a problem falling into the realm of Jaynes’ MaxEnt [1, 12], which is analogous
to deriving the barometric formula, Maxwell’s velocity distribution, or Fermi and Bose
statistics. In this framework,ρ(η) is obtained upon maximizing the entropy, subject to
the data constraints. Treating the constraints with Lagrange parameters we are out for the
maximum of

L = S −
∑
ij

λij

(∫
ρ(η)ηiηj dη − Cij

)
− λ0

∑
i

(∫
ρ(η)dη − 1

)
(8)

with λ0, λij being Lagrange parameters. Upon maximizingL with respect toρ(η) one
obtains an analytic expression for the solution

ρ(η) = 1

Z
e− ∑

ij λij ηiηj . (9)

An ignorant, flat default model (
∫

m(ω)dω = 1) has been assumed.Z is determined via
the normalization constraint

Z =
∫

e− ∑
ij λij ηiηj dNη = πN/2√

det(λij )
. (10)

The covariance constraint implies

Cij = −∂ ln(Z)

∂λij

= 1

2
(λ−1)ij ⇒ λij = 1

2
(C−1)ij . (11)

Hence the likelihood is the ubiquitous multivariate normal distribution

ρ(η) = 1√
det(2πC)

e− 1
2

∑
ij ηiC

−1
ij ηj (12)

which simplifies to a Gaussian if the errors are uncorrelatedCij = δijσ
2
i

ρ(η) = 1√∏
(2πσ 2

i )

e
− 1

2

∑
i

η2
i

σ2
i . (13)

Unfortunately, this handy result is only valid if the covariance matrix is known exactly,
which is not the case. Therefore we proceed one step further in the Bayesian hierarchy
and treat the errors of the covariance matrix on the same footing as the errors of the QMC
data D in the first place—by quantified MaxEnt [3]. The additional information available
by QMC simulations is the estimateσij of the variance of the individual matrix elements
Cij . Further reliable information cannot be taken from present QMC simulations. Hence
Bayesian probability theory is invoked to inferρ(η) from the QMC error covarianceCij

and the variancesσij of Cij . The posterior forρ(η) reads

P(ρ|CσH) = P(C|ρσH)P (ρ|H)

P (C|H)
. (14)

Superfluous conditions are suppressed. Again the entropic prior is used. The likelihood
P(C|ρσH) factorizes for the individual matrix elementsCij since they arelogically
independent

P(C|ρσH) =
∏
i<j

P (Cij |ρσijH). (15)
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The individual factors describe the probability distribution for a random variable, sayx,
if its expectation valuex and an estimateσ of the true variancêσ are given. The proper
statistics in this case is formed by the random variable [14]

t = x − x

σ/
√

f
(16)

which follows a Studentt-distribution forf = N − 1 degrees of freedom [14]

P(t) ∝ (
1 + t2/f

)− f +1
2 . (17)

The result was derived in the framework of Bayesian probability theory by Bretthorst [15]
upon marginalizing over the true varianceσ̂

P (x|xσ) =
∫ ∞

0
P(x|xσ̂H)P (σ̂ |σ)dσ̂ . (18)

According to Bayes theoremP(σ̂ |σ) ∝ P(σ |σ̂ )P (σ̂ ) with P(σ |σ̂ ) being theχ2 distribution.
The invariant priorP(σ̂ ) for a scale variable is Jeffreys’ prior [1]. The marginalization
leads to (17). In this univariate case, thet-distribution is extremely well approximated
by the Gaussian exp(−t2/2) already for small samples (N > 3)†. The likelihood under
consideration is therefore

P(C|ρσH) ∝ exp
(
−1

2

∑
ij

(Cij − ∫
ρ(η)ηiηj dη)2

σ 2
ij︸ ︷︷ ︸

χ2

)
. (19)

The varianceσij of the individual matrix elements of the covariance matrixCij is determined
from the QMC measurementsDν

i via the standard expression

σij = 1

N

N∑
ν=1

(
(Dν

i − Di)(D
ν
j − Dj)

)2

−
(

1

N

N∑
ν=1

(Dν
i − Di)(D

ν
j − Dj)

)2

(20)

which justifies the use of the Gaussian likelihood in (19). Hereν enumerates theN
measurements andDi stands for the QMC expectation value forDi .

The MaxEnt result forρ(η) is obtained upon maximizing the posterior (14), i.e.
P(ρ|CσH) ∝ exp

(
αS − 1

2χ2
)

or rather

L(ρ, C) = αS − 1
2χ2. (21)

It is expedient to perform a Legendre transform

L(ρ, C) → L̃(ρ, λ) = L(ρ, C) −
∑
ij

λijCij

λij := α
∂L
∂Cij

(22)

which reveals the remarkable fact that the solution in the case of noisy data has the same
functional form (9) as in the case of exact data constraints [13, 8], merely the determination
of the Lagrange parameters is modified due to the presence of noise to

Cij + αλijσ
2
ij =

∫
ρ(η)ηiηj dη = 1

2
(λ−1)ij . (23)

This relation coincides with (11) forσij = 0. In practice, however, the errors of the
covariance matrix are considerable. In particular if only a moderate number of QMC data

† The convergence is much slower in the multivariate case.
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is available the inclusion of the errors of the covariance matrix are essential to obtain a
meaningful result at all. The covariance matrixCij is determined from QMC dataDν

i via
Cij ∝ ∑N

ν=1 1Dν
i 1Dν

j , whereν represents the independent measurements (bins) ofDi , as
discussed below. It is obvious that the rank ofC is less or equal to the number of bins
(N ). Hence, if the number of bins is less than the dimension of the covariance matrix, the
inverse ofC, entering (12), does not exist, and the regularization term in (23) is essential (no
matter how smallσij ) to determineρ(η). The regularization parameterα entering (23) can
be determined either self-consistently upon maximizing the marginal posteriorP(α|CσH)

[3, 4], or via the historic conditionχ2 = N . We employ the historic approach since we
know that the number of good degrees of freedom is small and both stopping criteria will
yield essentially the same result [4]. Independent of theα-determination, the key result is
that the likelihood function entering the MaxEnt analysis of QMC imaginary-time data is
multinormal with an entropy-regularized covariance matrix. The non-linear equation (23)
is solved by the Newton–Raphson scheme. It turned out thatλij = 0.5(C−1)ij , the solution
of the noise-free case, is a reasonable starting point for the iteration scheme.

3. Application to the spectral properties of strongly correlated electrons

As a typical and topical problem we study the dynamic properties of the Hubbard model
which is presently the subject of intense analytical and numerical studies. The detailed
understanding of the dynamic properties of strongly correlated electrons is essential for the
theoretical description of the high-temperature superconductors. The Hubbard model reads

H = −t
∑

〈i,j〉,σ

(
c
†
i,σ cj,σ + HC

)
+ U

∑
i

ni↑ni↓ (24)

with the hopping matrix elementt between two adjacent sites.c(†)
i,σ destroys (creates) an

electron of spinσ on site i, 〈i, j〉 denotes nearest neighbours,U is a Coulomb repulsion
for two electrons of opposite spin on the same site andni,σ = c

†
i,σ ci,σ .

Unfortunately, dynamic properties cannot be measured directly by QMC simulations.
Dynamical information is provided by Matsubara Greens functionsDl = −〈TτP (τl)Q(0)〉
for discreteτl values on the imaginary time axis, wherel = n ∗ β/L, n = 0, ..., L andL

is the number of time slices.P andQ are operators which define the correlation function.
Here we will consider the one-particle properties of strongly correlated fermions, and the
operators are thereforeP = c andQ = c†, respectively. In order to determine the spectral
densityA(ω) for real frequenciesω the spectral theorem (1) is applied which is an inverse
Laplace transformation problem and pathologically ill-posed. Further information on the
spectrum is provided by making use of the lowest-order moments ofA(ω),

µm =
∫

ωmA(ω)dω (25)

which are given by commutation relations,µm = [[c, H ]m, c†], and are of simple shape for
m = 1, 2 [16].

4. Results

In order to compare the QMC/MaxEnt data with exact results, we consider a chain of
N = 12 sites, which is still accessible by exact diagonalization (ED) techniques. The QMC
simulations were done for an inverse temperature ofβt = 20 (T = 0.05t), where ground
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state behaviour is achieved for this system size and a comparison with theT = 0 ED
results is possible. After obtaining thermal equilibrium, up to 640 000 sweeps through the
space–time Ising-fields were performed.

Data from consecutive measurements are highly correlated, even for the same statistical
variableDl . A study of the skewness (third moment) and the kurtosis (fourth moment) of
the data showed, that to get Gaussian behaviour at least 200 measurements, each separated
by four sweeps, have to be accumulated to form one bin. Then the results of a certain
number of bins are used for the inversion process.

Figure 1. The data from one bin (points) compared to the final average over 800 bins (line).

But binning the data does not suffice to get rid of all the correlations [17]. Still one
has to consider the correlations in imaginary timeτ (i.e. betweenDl andDl′ ). In figure 1
the QMC result for one single bin is compared to the final shape of the Greens function for
Nbin = 800. Instead of being distributed ‘at random’ around the average the data for this
bin are systematically lower than the average forτ < β/2 and systematically higher for
τ > β/2. These correlations may be reduced by forming larger and larger bins (i.e. using
more and more computation time). But it is the aim of this paper to show that this is not a
sensible thing to do and that one can do better by taking into account the correlations and
particularly by accounting for the statistical errors of the covariance matrix.

In the following we will discuss the results of the MaxEnt procedure considering three
cases: (1) neglecting any information of the covariance matrix, (2) using the covariance
matrix only, and (3) taking into account both the covariance and its errors. To determine
the dependence on the number of bins and to give a quantitative argument for the amount
of the computational effort, which has to be taken, we show spectra resulting from QMC
data for 200, 400 and 800 bins (160 000, 320 000 and 640 000 sweeps, respectively). The
number of time-slices, which corresponds to the dimension of the covariance matrix, is 160
in the present study.

Starting with 200 bins, which is slightly larger than the number of time slices, one can see
(first column in figure 2) that neither the MaxEnt reconstruction of the plain data (figure 2(a))
nor the additional use of the covariance matrix (figure 2(d)) gives a reliable result. In both
spectra the structures are too pronounced and at the wrong position. It appears that the results
are generally better if the covariance matrix is not included, since the additional information
is treated as exact data-constraints although it suffers from pronounced statistical noise. If,
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Figure 2. Comparison of the MaxEnt spectra (thick line) with the ED result (thin line) for
different parameters. First row (a)–(c), without use of the covariance (first case, see text);
second row (d)–(f), with covariance (second case); third row (g)–(i), with the error of the
covariance matrix (third case). In dependence of the number of bins: first column (a)–(g), 200
bins; second column (b)–(h), 400 bins; third column (c)–(i), 800 bins.

however, the statistical errors of the covariance matrix are taken into account (figure 2(g))
the result reproduces the ED result very well. There is a small overestimation of the spectral
weight atω ≈ −3 only.

Increasing the number of bins to 400 gives still an overfitted result for the first case
(figure 2(b)). Taking the covariance matrix into account (figure 2(e)) shows a slightly
improved spectrum forω > 0, but forω ≈ −2 the spectral weight is suppressed completely.
Again the best spectrum is obtained if the errors of the covariance matrix are properly
accounted for (figure 2(h)). The maximum atω ≈ −3 is damped to the correct shape and
the agreement with the ED result is nearly perfect now.

Eventually for the large number of 800 bins all three spectra show satisfactory results
(third column of figure 2). Only in the first case (figure 2(c)) the MaxEnt curve decreases
still too fast forω > 5 leading to a wrong width.

The convergence of the various approaches is reasonable, since with increasing number
of bins, the correlation of the QMC errors for different imaginary times vanishes and the
covariance matrix becomes diagonal and the covariance of the errors can be ignored. At the
same time, the errors of the covariance matrix decrease and assuming exact data constraints
becomes also exact.

In principle the method we suggested is one further step in a hierarchy of probabilities.
One could argue that it would be necessary to include the errors of the variance of the
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covariance matrix as well. To illustrate that this is not the case we studied the robustness of
the presented scheme against changes in the variancesσij . It turned out that, as long as the
errors are in the right order of magnitude the details do not matter. Even a constant relative
error (which is certainly no valid approximation for the errors of a Poisson process) yields
no significant deviations from the results obtained by taking the correct data. The statistical
errors of the covariance matrix were in the problem under consideration about 20%. In
summary, the recovered spectral density depends strongly on the statistical errors of the
covariance matrix which can lead to spurious structures. It is therefore necessary to take
these errors into account, e.g. as presented in this paper by using the entropy-regularized
covariance matrix. The accuracy of the statistical errors, however, has little impact on the
sought-for spectral density.

5. Conclusion

Bayesian probability theory is the quantification of inductive logic if there is uncertainty.
It allows an unbiased inference from any type of testable information, like e.g. incomplete
and noisy data and prior knowledge. In the case of the inversion problem posed by QMC
simulations, the information consists of exact sum-rules, estimates for expectation values,
the variance-covariance matrix, and the statistical errors of these matrix elements. We
have shown that only if the covariance matrix and its errors are treated consistently in the
Bayesian frame reliable results are obtained regardless of the number bins.
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